
ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 5, NOS 3-4 (2004)
PAGES 121-143

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL
OPTIMIZATION PROBLEMS

Mohammad G. Sahab∗, Civil and Environmental Engineering Department, Amirkabir

University of Technology (Tafresh Branch) Tehran, Iran.
Vassili V. Toropov, Altair Engineering Ltd. Vanguard Centre, Sir William Lyons Road,

Coventry, CV4 7EZ, UK.
Ashraf F. Ashour, School of engineering, Design and Technology, University of Bradford,

Bradford, West Yorkshire BD7 1DP, UK.

ABSTRACT

This paper presents a hybrid optimization algorithm based on a modified genetic algorithm
(GA). The algorithm includes two stages. In the first stage, a global search is carried out
over the design search space using a modified GA. In the second stage, a local search is
executed that is based on GA solution using a discretized form of Hooke and Jeeves method.
The modifications on basic GA includes dynamically changing the population size
throughout the GA process, utilizing variable penalty multiplier and the use of a square root
form of the penalty function in constraint handling. The hybrid algorithm and the
modifications to the basic GA are examined on the design optimization of a well-known test
problem (10 bar truss). The effect of different parameters and techniques of handling GA
operators on the performance of the proposed algorithm is investigated. The hybrid
algorithm is employed for the design optimization of a reinforced concrete flat slab building
and the results are compared with those of using the GA only.

Keywords: structural optimization, genetic algorithm, hybrid optimization algorithm, flat
slab building

INTRODUCTION

Genetic algorithms (GAs) belong to a family of algorithms called evolutionary algorithms.
Other major algorithms of this family include evolutionary programming, evolutionary
strategies and genetic programming. Evolutionary algorithms have been inspired from the
principles of evolution in the nature. Genetic algorithms were developed by Holland, his
colleagues and students in the 1960s and 1970s [1].

GA has been described as a robust optimization technique [2]. GA can not guarantee
finding the optimum solution but it is able to determine a near-optimal solution. As a GA is

∗ E-mail address of the corresponding author: sahab@cic.aut.ac.ir

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 122

a time consuming optimization technique it can be used in conjunction with other
optimization techniques to provide an efficient hybrid optimization algorithm. These hybrid
algorithms based on GA are usually called hybrid GA [3]. Also many attempts were made to
modify GA operators and tuning of GA parameters to increase its efficiency [4-6]. In this
paper a hybrid optimization algorithm based on a GA is presented and examined on design
optimization of a 10-bar truss test problem and a reinforced concrete (RC) flat slab building.

THE BASIC GA PROCEDURE

GA is an iterative procedure that is motivated by the principles of natural selection and
survival of the fittest ones. A GA begins searching by a randomly created population of
solutions that are represented using a string coding of fixed length (chromosome). The
solutions are decoded and evaluated according to a criterion that is called fitness function.
Every solution is assigned a fitness according to the obtained value of fitness function for
that solution. To produce a new generation (new population) of solutions, some of the
solutions are selected according to their fitness values to enter to the matting pool. Next, the
matting pool is filled by cloning the individuals (solutions) in proportion to their fitness
values using a randomized technique. Creation of a new population is implemented by
crossover and mutation operations. In crossover stage, two individuals are selected as
parents and then some segments of encoded string of parents are swapped to create two
children. During the mutation, some random changes are applied to encoded string of some
randomly selected children. The fitness values of individuals of new generation are
evaluated. If the termination conditions are satisfied, the process is terminated. Otherwise
the iteration process is repeated.

CONSTRAINT HANDLING

As a GA is an unconstrained optimization technique, it is necessary to transform the
constrained optimization problem to an unconstraint one. Several methods for handling
constraints by GAs have been proposed [7]. Among them rejecting strategy and the methods
based on penalty approach can be named. In the rejecting strategy, any design that violates
one or more constraints is not accepted to create a new population in the GA process. In a
penalty method, a constrained optimization problem is converted to an unconstrained
problem by adding a penalty for each constraint violation to the objective function, C(x), as
follows:

)()()(~
1

xxx ∑
=

+=
m

i
iΦ r CC (1)

where)(~ xC is the penalised objective function, r is the penalty multiplier, m is the number
of constraints and Φi is the i-th penalty function which can be expressed in a general form as
follows:

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

123

 nxGΦ ii)]0,)(([max)(=x (2)

where n is the power of penalty function and)(xiG is the value of the i-th constraint.
Different forms for penalty function have been proposed in the literature [7]. Quadratic
penalty function is one of the most common forms of the penalty function, which has been
used by many researchers [2, 8-10].

Penalty multiplier is an important effective factor that influences the way of driving the
bulk of population over the design search space. At the beginning of a GA process the
population of designs is distributed all over the design search space either feasible or
infeasible region. As the GA progresses and the design population evolves, applying a
penalty to infeasible designs forces the population to move towards the feasible region of the
design search space. Two strategies for applying a variable penalty multiplier are proposed
and examined in this paper.

ENCODING

In the basic GA encoding is carried out using binary strings [2]. Traditional binary coding
for function optimization is known to have a weakness due to the large change of a real
parameter value arising from changing a single bit in the binary string of the parameter. For
example, the binary strings 011111 and 111111 are equal to decimal numbers of 63 and 31,
respectively, while they are only different in one bit.

Gray coding is another way of coding parameters into bits, which has the property that an
increase by one step in the value of a design variable corresponds to change of a single bit in
the binary string of the design variable. The conversion from Gray coding to binary coding
is given by:

 ∑
=

=
k

i
k iβ

1
γ (3)

where βk is the k-th binary code bit and γi is the i-th Gray code bit. Bits are numbered from 1
to n starting on the left and summation is done in binary mode [11]. These two different
coding methods have been implemented in the developed optimization algorithm.

SELECTION

Fitness proportional selection is a common method in GAs [2]. Its basic idea is that the
selection probability for each individual is proportional to the fitness value. In another
popular type of selection, tournament selection, some number of individuals are randomly
selected from the population. The best individual of this group is then selected as a parent.
The process is repeated to select one more parent to form a couple. The number of selected
individuals for tournament competition is called tournament size, which is often two [9].

Whitley [12] pointed out two weaknesses for the fitness proportional selection, which are

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 124

stagnation and premature convergence of the search. When the relative difference between
fitness value of the individuals is small the search process stagnates. On the other hand,
when the relative difference between the fitness value of the individuals is large, the fittest
individuals dominate the creation of the next generation. Consequently, the search
prematurely converges to a solution. In tournament selection all individuals have an equal
chance of being selected for tournament competition, therefore this method is immune to the
aforementioned shortcomings of the fitness proportional selection. These two selection
schemes are compared in this study.

CROSSOVER

One-point crossover is the simplest type of crossover, but it has some shortcomings. This
method combines the bit strings in a limited way. Sometimes only a few bits in the strings of
parents need to be altered, but this method exchanges all bits after the crossover point. This
effect is called positional bias [13,14]. This implies that the strings with long defining
lengths could be often destroyed under one-point crossover [13,14]. The segments,
exchanged between the parents, always include the end points of the strings. This is called
endpoint effect [13]. In addition, crossover of parent strings that are identical after the
crossover point has no effect, as the children will be identical to the parents.

In order to reduce the above mentioned problems of one-point crossover, two-point cross
over often used [13]. In this method two crossover points are selected at random and the
parts of strings between them are exchanged.

Uniform crossover exchanges every bit along the parent strings at random. Uniform
crossover does not have any of the aforementioned shortcomings of the one-point crossover.
However, it has been claimed that this method can be highly disruptive, especially in early
generations [13,14]. These three methods of crossover are investigated.

ELITIST STRATEGY AND MUTATION

The elitist strategy introduced by DeJong [15] transfers some number of the fittest
individuals of the current generation according to the assumed percentage of elite, Pe, to the
next generation. Therefore, the best individuals are not lost due to crossover and mutation
and the maximum fitness value in a generation can not decrease as compared with the
previous generation. Since in the developed GA in this study mutation is applied on
common (non-elite) individuals, the mutation rate is less than a typical value of around
0.1%. In this paper the effect of different elite percentages on the efficiency of GA is
investigated.

THE PROPOSED HYBRID ALGORITHM

The hybrid algorithm includes two stages. In the first stage, a global search is carried out

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

125

over the design search space using a modified GA as explained in the next section. In the
second stage, a local search is implemented based on GA solution using a discretized form
of Hooke and Jeeves method [16]. At the beginning, the penalized objective function is
calculated at a point obtained by a positive or negative increment in the direction of the first
coordinate (design variable). If any of these new points gives a better design, this new point
is considered as a new base point. Then exploration is continued in the specified direction of
the first coordinate until no better design can be obtained by a further movement. This
process is repeated for all coordinates until there is no point in the neighbourhood of a base
point that gives a better design. If an improvement is achieved in the direction of any
coordinate, the exploration is carried out by going through all other coordinates.

MODIFICATIONS TO THE BASIC GA

Two modifications have been applied to the basic GA and two other modifications are
examined in the constraint handling by penalty approach.

The first modification to the basic GA is that GA starts by a large size, Is, of randomly
created designs over the design search space and then, a smaller number of best designs, Ss,
are selected to carry on the rest of the GA process [5].

As the GA process progresses, the population becomes more uniform and fitness values
of individuals become close to each other. One individual from each group of individuals
with same fitness value, as a representative of the group, can be sufficient to transfer genetic
information during the crossover. The second modification limits the number of copies of
each group of designs with the same fitness to one. In this manner the population size is
decreased during the process but it does not become smaller than a predefined minimum
allowable population size, Ms [6].

Proximity of the GA solution to the optimum solution heavily depends on the values of
the penalty multiplier. If the penalty coefficient is moderate, the algorithm may converge to
an unfeasible solution. On the other hand, if the penalty coefficient is too large this case is
equivalent to the rejecting strategy. Infeasible solutions may have some useful genetic
information, which can be transferred to feasible solutions during the crossover. Therefore,
the use of a moderate penalty multiplier can increase the chance of transformation of useful
information from infeasible to feasible solutions. These facts suggest using a variable
penalty multiplier in the GA process. The penalty multiplier may be increased by a positive
increment or decreased by a negative increment. These two approaches of changing the
penalty multiplier are examined in this paper. As Eq. (4) shows, the final penalty multiplier
is limited by a certain value, rf.

))),1(((figerini rNIrMaxr −×+= (4)

where ri and igeN specify the i-th penalty multiplier and generation number, respectively,
rin is the initial value of penalty multiplier and Ir is the penalty multiplier increment.

Since the constraints have been introduced in the normalized form, approaching to the

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 126

end of the GA process, the values of constraints for infeasible solutions become close to
zero. In this case, the use of a power n lesser than one, in Eq. (2), for the penalty function
can magnify a slight violation of the constraints, more so than in the traditional quadratic
form. On the other hand, the use of a power greater than one for the cases when the value of
constraint violation is greater than one may magnify the constraint violation and
consequently using a smaller penalty multiplier can be possible. These cases may mostly
occur at the beginning of search process when the solutions are distributed over the design
search space either in feasible or in infeasible domain. In this paper, the efficiency of the
optimization algorithm using quadratic, linear and square root forms for the penalty function
is compared.

NUMERICAL RESULTS

To evaluate the efficiency of the proposed algorithm and its modifications, design
optimization of a 10-bar truss and a RC flat slab building is carried out.

Example 1; 10-bar Truss: This test problem has been widely used by other researchers
(e.g. Refs. [5], [17] and [18]). The geometry and loading of the truss is presented in Figure
1. Design variables, xi, are the cross-section of truss members which can take a certain value
from a predefined set as given in Eq. (5). The objective function is the total weight of the
truss, W(x). The total weight is minimized while the member stresses, σi , does not exceed
±25ksi and the vertical displacements, δj, of nodes D and E, become less than 2in. The
mathematical formulation of the problem is as follows:

Figure 1. 10-bar truss

 Minimize)(xW = ∑
=

10

1i
iilxρ ,

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

127

 subject to: 1
(ksi)25

≤
)(xiσ , i = 1, 2,…10 (5)

 1
(in)2

≤
)(xjδ

 j = E, D,

xi (in2)∈{1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63,
3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9,
14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5 } i = 1, 2,…10

All members are double angle aluminium profiles taken from the AISC manual [18] with

the specific weight, ρ, of 0.1 lb/in2 and modulus of elasticity, E, of 104 ksi. Table 1 compares
the cross-sectional area of truss elements for the best solution given by Mahfouz [4], Rajeev
et al. [17] and Galante [18] and the present study. The best solutions obtained by Mahfouz,
Galante and the present study are the same. The current algorithm gives less weight truss
than that by Rajeev et al. [17].

Table 1. Comparison of the best solutions given by other researchers and the present study

Design variables Rajeev et al. Galante, Mahfouz and present study

x1 (in2) 33.5 33.5

x2 (in2) 1.62 1.62

x3 (in2) 22 22.9

x4 (in2) 15.5 14.2

x5 (in2) 1.62 1.62

x6 (in2) 1.62 1.62

x7 (in2) 14.2 7.97

x8 (in2) 19.9 22.9

x9 (in2) 19.9 22

x10 (in2) 2.62 1.62

Total weight (lb) 5613.8 5490.7

MULTIMODALITY OF THE PENALIZED OBJECTIVE FUNCTION

The penalized objective function in the above test problem can be a multimodal function of
the cross-sections of the truss elements. Table 2 lists the values of the penalized objective

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 128

function,)(~ XC , in the fifteenth best solutions listed from the best to the worst in terms of

)(~ XC that can be local optima. These points have been obtained after a local search around
GA solutions. There is no explicit expression for the penalized objective function in terms of
design variables. Therefore, it can not be mathematically possible to prove these points are
local minima of the penalized objective function. To show the variation of the penalized
objective function around the best solution the values of the penalized objective function
have been calculated at four points in the direction of each coordinate as shown in Figure 2.

Table 2. Values of the penalized objective function for the fifteen best solutions

Values of design variable (lb) Solution
number

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
)(~ XC

1 33.5 1.62 22.9 14.2 1.62 1.62 7.97 22.9 22.0 1.62 5490.738

2 33.5 1.62 22.9 15.5 1.62 1.62 7.97 22.0 22.0 1.62 5491.717

3 33.5 1.62 22.9 14.2 1.62 1.62 7.22 22.9 22.9 1.62 5498.375

4 33.5 1.62 22.9 15.5 1.62 1.62 7.22 22.9 22.0 1.62 5499.354

5 33.5 1.62 22.9 15.5 1.62 1.62 7.22 22.0 22.9 1.62 5499.354

6 33.5 1.62 22.0 13.9 1.62 1.62 7.97 22.9 22.9 1.80 5502.523

7 33.5 1.62 22.9 16.9 1.62 1.62 7.22 22.0 22.0 1.62 5503.934

8 33.5 1.62 22.0 14.2 1.62 1.62 7.97 22.9 22.9 1.62 5504.158

9 33.5 1.62 22.0 15.5 1.62 1.62 7.97 22.9 22.0 1.62 5505.138

10 33.5 1.62 22.0 15.5 1.62 1.62 7.97 22.0 22.9 1.62 5505.138

11 30.0 1.62 22.9 16.9 1.62 1.62 7.97 22.9 22.9 1.62 5507.758

12 33.5 1.62 22.0 16.9 1.62 1.62 7.97 22.0 22.0 1.62 5509.717

13 33.5 1.8 22.9 14.2 1.62 1.99 7.97 22.0 22.9 1.62 5510.538

14 33.5 1.62 22.9 13.5 1.62 1.62 7.97 22.9 22.9 1.62 5511.358

15 33.5 1.62 22.0 15.5 1.62 1.62 7.22 22.9 22.9 1.62 5512.775

These four points are two points before and two points after a presumed local optimum in

the direction of a given coordinate. In this figure, each radial line specifies the direction of a

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

129

coordinate (design variable) numbered from one to ten for the ten design variables. As it is
seen by moving to any point in neighbourhood of the best solution in the direction of each
coordinate the value of the penalized objective function increases.

Figure 2. Variation of the penalized objective around the best solution (N/A indicates that a
positive or negative increment is out of the defined range for the design variable)

COMPARATIVE STUDIES

The performance of GA is affected by parameters such as population size, probability of
crossover and mutation, Pc and Pm, percentage of elite, Pe , method of selection, crossover
and encoding and many other parameters. In the following the effect of some of these
parameters and methods for the test problem is investigated. These comparative studies are
as follows:

Case 1. Comparison of Gray and binary coding.
Case 2. Effect of population sizes.
Case 3. Effect of penalty multiplier.
Case 4. Effect of percentage of elite.
Case 5. Effect of power of penalty function.
Case 6. Comparison of three crossover methods: one-point, two-point and uniform
crossover.
Case 7. Comparison of two selection methods: fitness proportional and tournament
selection.
Case 8. Comparison of results obtained from GA only and the hybrid GA.

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 130

The specifications and some input data for these comparative studies are given in Table

3. In all cases the probability of mutation and crossover are kept fixed at Pm = 0.01, Pc = 1,
respectively.

Table 3. Specifications of different comparative studies considered in Example 1

Case Is Ss Ms r n Pe Coding Crossover Selection

1 1000 100-600 50 0.75 0.5 10 G and B ONC FPS

2
500
and

1500
200-500

50 and
100-
500

0.75 0.5 10 G ONC FPS

3 1000 100-600 50 0.65-0.9 0.5 10 G ONC FPS

4 1000 600 50 0.75 0.5 0-90 G ONC FPS

5 1000 600 50
0.75,

1.2 and
1E5

0.5, 1
and 2 10 G ONC FPS

6 1000 600 and
700

50,
550
and
600

0.75 0.5 10 G ONC, TWC
and UNC FPS

7 1000 600
300
and
500

0.75 0.5 10 G ONC FPS and
TOS

8 1000 300 and
600 50 0.75 0.5 10 G ONC FPS

Note: Is is an initial population size, Ss is the number of the best selected individuals in the second
generation, Ms is the minimum allowable population size, r is the penalty multiplier, n is the
power of penalty function, Pe is the elite percentage. G and B stand for Gray and binary coding,
respectively. ONC, TWC and UNC stand for one-point, two-point and uniform crossover,
respectively. FPS and TOS stand for fitness proportional and tournament selections.

BINARY AND GRAY CODING

Table 4 presents the results of implementation of the proposed GA using binary and Gray
coding. It can be observed that generally, the average number of function evaluations for
Gray coding is larger than that for binary coding and the obtained results for Gray coding
are better than those for binary coding. In cases where the average number of function

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

131

evaluations of two coding methods are similar, the results for Gray coding are still better
than those for binary coding. The frequency of the best solution in 20 runs for Gray coding
is either the same or higher than that for binary coding.

Table 4. Comparisons of the results of GA using Gray and binary coding

Ss
Coding
method

The best
solution (lb)

Frequency of
the best solution

(20 runs)

Average
(lb)

Average number
of function
evaluations

Gray 5523.906 1 5580.279 9182
100

Binary 5544.462 1 5670.311 7201

Gray 5490.738 1 5562.376 13065
200

Binary 5534.742 1 5672.127 11081

Gray 5498.374 1 5556.827 17195
300

Binary 5533.656 1 5600.956 16158

Gray 5491.717 2 5535.129 23361
400

Binary 5491.717 1 5572.322 22943

Gray 5490.738 3 5519.741 29275
500

Binary 5490.738 1 5571.035 28866

Gray 5490.738 4 5518.475 34705
600

Binary 5491.717 1 5548.819 35732

Note: Ss is the number of the best selected individuals in the second generation.

POPULATION SIZE

In the proposed algorithm, the population size during the GA process, dynamically
decreases. Three different values are specified for the population size; those are the initial
population size, Is, the size of the best selected individuals in the second generation, Ss, and the
minimum allowable population size, Ms. Different population sizes have been tested.
According to Table 3 (Case 2), Is takes 500 and 1500, Ss changes from 200 to 500 with step
size of 100 and Ms takes 50 and varies from 100 to 500 with intervals of 100. For each set of
population sizes 20 runs have been carried out and the average penalized objective function

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 132

and the number of function evaluations of 20 runs, have been calculated. Figures 3a and 3b
show the variation of the average penalized objective function versus Ms for different Ss and Is.

Figure 3. Variation of the average penalized objective function with respect to minimum
population size for varying sizes of the best selected individuals

These curves do not present a regular change but, in general, they follow a decreasing trend
toward a certain limit. An increasing in any of the population sizes increases variety of
chromosomes in the population and as a result the diversity of the population. Figures 4a
and 4b show the variation of the average number of function evaluations against Ms for
different Ss and Is.

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

133

Figure 4. Variation of the average number of function evaluations with respect to minimum
population size for varying sizes of the best selected individuals

These figures confirm that the increase of the population size leads to finding a better

solution at the expense of greater number of function evaluations. By comparing these
figures with Figures 3a and 3b, one can conclude that as the minimum size of population
increases, the number of function evaluations increases and, at the same time, the average
value of the penalized objective function decreases. However, some sets of population sizes
with a relatively small number of function evaluations give better values for the average
penalized function. But in general, it can be deduced that to have a good solution the
population sizes must be large enough to allow an adequate number of function evaluations
before the GA converges to the solution.

This study indicates that the initial population size does not have a significant effect on
the optimum solution. With the increasing initial population size from 500 to 2000, for same
set of Ss and Ms, the number of function evaluations and the average penalized objective
function are not significantly changed. Accordingly, Ms and Ss have the most significant

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 134

effect on the performance of the GA, respectively.

PENALTY MULTIPLIER

Three different strategies for applying a penalty multiplier are examined on this test
problem. First, a constant penalty multiplier is considered along the GA process. Figure 5
illustrates the effect of the penalty multiplier on the average penalized objective function of
the solutions of 20 runs for varying sizes of Ss. It can be seen that in a certain range the
increase in the value of the penalty multiplier leads to a dramatic decrease in the average
penalized objective function up to a certain limit, beyond which there is almost no major
change in the average penalized objective function.

Figure 5. The average penalized objective function versus penalty multiplier for varying sizes of
the best selected individuals

Figure 6. Average number of function evaluations versus penalty multiplier for varying

sizes of the best selected individuals

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

135

Figure 6 shows the average number of function evaluations plotted against the penalty
multiplier for varying Ss. It can be seen that in the range where the average penalized
objective function does not dramatically change with the increase of the penalty multiplier,
the variation of the number of function evaluations is nearly flat.

Two other approaches implementing of a variable penalty multiplier during a GA process
have been examined. In the first approach, the penalty multiplier changes from a relatively
large value and linearly decreases to a minimum allowable value (Eq. (4)). In the second
approach, the penalty multiplier changes from a relatively small value and linearly increases
to a maximum allowable value (Eq. (4)).

Table 5. Comparisons between the results of applying a fixed and variable penalty multipliers

Case rin rf Ir Nfea Ninf

Average penalized
objective function

(lb)

Average number of
function

evaluations

Fixed penalty
multiplier 0.75 0.75 0 20 0 5518.475 34705

1 0.4 -0.01 7 13 5530.364 34923

1 0.4 -0.0075 11 9 5510.581 35858

1 0.4 -0.005 20 0 5522.624 34569

Variable
penalty

multiplier
1 0.4 -0.0025 20 0 5527.804 34043

0.4 1 0.01 20 0 5529.139 42773

0.4 1 0.0075 17 3 5534.776 41837

0.4 1 0.005 15 5 5553.412 41623

Variable
penalty

multiplier
0.4 1 0.0025 11 9 5600.942 39249

Note: rin is the initial value of penalty multiplier, rf is the final value of penalty multiplier, Ir is the
penalty multiplier increment, Nfea is the number of feasible solutions, Ninf is the number of
infeasible solutions.

Table 5 presents the results for all three strategies. In this table, Nfea and Ninf specify the

number of feasible and infeasible solutions out of 20 runs, respectively. It can be observed
that there is no significant preference for a variable penalty multiplier over a fixed penalty
multiplier. In most cases, the average number of function evaluations and the average
penalized objective function for a fixed penalty multiplier is smaller than the corresponding
values for a variable penalty multiplier.

POWER OF PENALTY TERM

Three different powers for the penalty term in Eq. (2) are studied; namely n = 0.5, 1 and 2.
The results have been summarised in Table 6. In order to study the effect of the power of
penalty function on the GA performance, results of the GA only (i.e. before any

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 136

improvement by a local search technique) are presented in this table.

Table 6. Comparisons between different powers for penalty function

n r
The best
solution

(lb)

Maximum
constraint

value

Frequency
of the best
solution
(20 runs)

Solutions
violating

constraints

Average
(lb)

Average
number of
function

evaluations
0.5 0.75 5490.738 0.9995 4 0 5519.985 34687

0.75 4695.669 1.1803 13 20 4709.700 31327
1

1.2 5490.738 0.9995 12 5 5490.824 32733

0.75 4075.538 1.373 17 20 4080.228 34304
2

1E5 5490.738 0.9995 1 2 5530.246 40533

Note: n is the power of penalty function, r is the penalty multiplier.

The results show that a power less than one in the penalty function allows using a

relatively small penalty multiplier. To avoid any constraint violation, when the power in the
penalty function increases, the penalty multiplier has to be dramatically increased. As shown
in Table 6, for the power n = 2 in the penalty function, a penalty multiplier equal to 1E5 is
still insufficient to prevent constraint violation; this has been occurred twice in 20 runs.

Overall, considering the number of solutions violating constrains and the averages of
results for each power in the penalty function; it may be concluded that a power less than
one in the penalty function performs better than that greater than one.

Figure 7. The average penalized objective function and the number of function evaluations
against the elite percentage

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

137

EFFECT OF THE ELITE PERCENTAGE

Figure 7 shows the variation of the average penalized objective function and the average
number of function evaluations against the elite percentage, Pe. By increasing the elite
percentage from zero to 90%, the average penalized objective function, initially decreases,
passes a minimum and, then, increases with some fluctuations. The average number of
function evaluations follows a decreasing trend. In this test problem, a value of elite
percentage between 5 to 20% gives better solutions while the number of function
evaluations is relatively small.

Table 7. Comparisons of the results for three crossover methods

Crossover
method

The best
solution

(lb)

Frequency of the
best solution

(20 runs)

Average
(lb)

Average number
of function
evaluations

one-point 5490.738 4 5518.475 34705

Two-point 5490.738 3 5514.501 37877

Uniform 5490.738 8 5507.458 75156

Table 8. Comparisons of the results of one-point and uniform crossover considering the number
of function evaluation

Crossover
method Ss Ms

The best
solution (lb)

Frequency of
the best
solution
(20 runs)

Average
(lb)

Average number
of function
evaluations

600 50 5490.738 4 5518.475 34705

600 550 5490.738 9 5504.398 68130

600 600 5490.738 10 5504.568 71877
One-point

700 600 5490.738 11 5499.995 74100

Uniform 600 50 5490.738 8 5507.458 75156

Note: Ss is the number of the best selected individuals in the second generation, Ms is the
minimum allowable population size.

EXAMINING THREE METHODS OF CROSSOVER

Table 7 shows the obtained results for three methods of crossover on this test problem. For

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 138

all three methods, Ss and Ms are equal to 600 and 50, respectively. It can be observed that the
uniform crossover gives better solutions at the expense of much larger number of function
evaluations.

Table 8 compares the obtained results for one-point crossover for varying Ss and Ms with
that of the uniform crossover while Ss and Ms are equal to 600 and 50, respectively. This
table shows that by increasing the population sizes and consequently increasing the average
number of function evaluations the results for one-point crossover can be better or close to
that for the uniform crossover. This means that for the same number of the function
evaluations the uniform crossover does not have an evident preference over one or two-point
crossover.

Table 9. Comparisons of two selection methods

Ms
Selection
method

The best
solution (lb)

Frequency of
the best
solution
(20 runs)

Average
(lb)

Average number
of function
evaluations

Fitness
proportional 5490.738 11 5513.510 46447

A 5490.738 3 5527.895 30100

si
ze

=2

B 5490.738 1 5546.871 28238

A 5529.300 1 5573.311 20700

si
ze

=1
0

B 5513.158 1 5589.317 19553

A 5523.906 1 5619.042 19463

300

To
ur

na
m

en
t

si
ze

=2
0

B 5507.758 2 5572.003 21641

Fitness
proportional 5490.738 7 5517.283 59248

A 5490.738 2 5531.087 44495

Si
ze

=2

B 5490.738 3 5542.656 41514

A 5490.738 1 5555.846 33975

Si
ze

=1
0

B 5507.758 1 5551.524 31767

A 5498.375 1 5578.721 30883

500

To
ur

na
m

en
t

Si
ze

=2
0

B 5490.738 1 5561.344 32643

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

139

Note: Ms is the minimum allowable population size. In Case A, the tournament selection is used
in the mating process and the fitness proportional selection is used in the cloning stage. In Case
B, the tournament selection is utilized for both mating and cloning processes.

FITNESS PROPORTIONAL AND TOURNAMENT
SELECTION METHODS

The obtained results using fitness proportional and tournament selection in a GA are
presented in Table 9. Two cases of the use of the tournament selection have been examined.
In the first case, the tournament selection is used in the mating process and fitness
proportional selection is used in the stage of cloning (Case A). In the second case, the
tournament selection is utilized for both mating and cloning processes (Case B). Since a
tournament between individuals in a population of a small size leads to a premature
convergence, (as comparison of the number of function evaluations for Ms=300 and Ms=500
in the Table 9 confirms this), relatively large values of Ms have been considered (300 and
600). In the GA developed in this paper, all fitness values are scaled using a linear fitness
scaling [7]. Therefore, the problem of premature convergence or slow of convergence
reported for the fitness proportional selection is reduced. The results show that in this case
the tournament selection does not have any advantage over the fitness proportional selection.
It can be seen that with the increasing tournament size, the number of function evaluations
decreases and the average value of the penalized objective function at the solution increases.
This means that the increase in the tournament size may lead to premature convergence.
Also, the results indicate that the use of the tournament selection for mating process only
performs better than that when this selection scheme is used for both mating and cloning
processes (fitness values are scaled).

Table 10. Comparisons of the results of the hybrid algorithm and the GA

GA only Hybrid GA

Population
sizes Average

(lb)

Average number
of function
evaluations

Average
(lb)

Average
number of
function

evaluations

Number of
improved

solutions out
of 20 runs

Is = 1000
Ss = 300
Ms = 50

5560.729 17175 5556.827 17195 4

Is = 1000
Ss = 600
Ms = 50

5519.985 34687 5518.09 34705 3

Note: Is is an initial population size, Ss is the number of the best selected individuals in the
second generation, Ms is the minimum allowable population size.

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 140

COMPARISON OF THE GA AND THE HYBRID GA

The results of 20 runs of the program aimed at the comparison of the modified GA and the
developed hybrid GA are illustrated in Table 10. This table indicates that using the hybrid
GA can perform better than GA at the expense of only a few more function evaluations. In
the following another example on a more practical problem is given to show the
effectiveness of the hybrid GA. As it is illustrated, in this case the hybrid GA is more
efficient as compared to the first example.

Example 2; Design Optimization of a Flat Slab Building: Design optimization of a
three-storey flat slab building of height 4 m in the first and 3 m in the second and third floors
is carried out. The span lengths are as shown in Figure 8. Live load is 5 kN/m2 and dead load
is 2.5 kN/m2 plus the self-weight of the floor. The unit prices of concrete, reinforcement,
formwork and excavation cost of foundations, including the cost of labour and material, are
55 £/m3, 0.5 £/kg, 20 £/m2 and 20 £/m3, respectively. The characteristic strength of main and
shear reinforcement and concrete are 460 and 250 and 35 N/mm2, respectively. Four types of
cross-sectional dimensions are considered for columns in each floor which are a corner
column, an edge column in each direction of the building and an intermediate column. It is
assumed that cross-sectional dimensions of columns for each type in the first and second
floor are identical. Therefore, there are 16 design variables for column cross-sectional
dimensions and 3 design variables for thickness of floors. The binary string of design
variables includes 82 binary bits which has been formed from sixteen segments of four bits
and three segments of six bits. The aim is to minimize the total cost of the structure subject
to some constraints defined based on British Code of Practice [19].

Figure 8. Typical plan of a three-storey RC flat slab building

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

141

 Minimize: eeffrrcc uVuSuWuVC +++=)(x
 subject to: miiG ,...,2,11)(=≤x , (6)

 njxxx u
jj

l
j ,...,2,1=≤≤ ,

where C (x), is the total cost, Vc , Wr , Sf and Ve are the total volume of concrete, weight of
reinforcement, area of formwork and foundation excavation for a quarter of the building, uc,
ur, uf and ue represent the unit cost of labour and material for concrete, reinforcement,
formwork and foundation excavation, respectively. Gi(x) is the i-th constraint function as
defined by BS 8110 [19].

The results of 10 runs using the GA only and the hybrid algorithm are illustrated in Table
11. As it is observed by spending a little time for complementary search the GA solution can
be significantly improved. There are no identical solutions when GA only is used. But after
modification of the GA solutions by a local search some identical solutions are found. Also,
several runs have been carried out using GA only. Population sizes and some GA
parameters were changed to increase the accuracy of GA solution. As a result by spending
3.77 times more of relative computing time an optimum solution of £12858, identical to the
best result of hybrid GA, was achieved.

Table 11. Performance of GA only and a hybrid algorithm on design optimization
of a RC flat slab building

GA only
Hybrid algorithm

(GA and discretized form of Hooke
and Jeeves method) Run

Cost function
(£)

Relative
computing time Cost function (£) Relative

computing time

1 13850 0.55 12971 0.68

2 14140 0.14 13503 0.2

3 13645 0.71 12992 0.89

4 14014 0.25 12858 0.29

5 13885 0.36 12858 0.46

6 13866 0.41 12978 0.45

7 13340 0.88 12926 1

8 14031 0.41 12906 0.5

9 13805 0.41 12976 0.48

10 14161 0.31 12906 0.36

Mohammad G. Sahab, Vassili V. Toropov and Ashraf F. Ashour 142

CONCLUSIONS

A hybrid algorithm based on GA and some modifications on basic GA were proposed. The
proposed algorithm and modifications were examined using a common test problem and
then applied to design optimization of a reinforced concrete flat slab building. The main
conclusions of this study can be drawn as follows:

• The number of function evaluations has to be considered as a criterion to judge the
performance of a GA. Generally, better solutions are obtained at the expense of more
function evaluations.

• On the test problem Gray coding performed better than basic binary coding.
• In order to obtain a good solution the population size of the best selected individuals

in the second generation, Ss, and the minimum population size, Ms, should be large
enough to provide an adequate number of function evaluations before GA converges
to the solution.

• When the fitness values are scaled, the tournament selection does not show preference
over the fitness proportional selection scheme. When the population size is relatively
small the tournament selection may lead to premature convergence.

• When the constraints are introduced in the normalized form, a power less than one in
the penalty function can considerably improve the efficiency of GA.

• For the same number of function evaluations, none of the one-point, two point or
uniform crossover schemes shows any evident preference over others.

• A large elite percentage may lead to premature convergence. On the other hand a
small elite percentage (less than 5% in the selected test problem) may cause losing the
advantage of elitist strategy. On the basis of the obtained results an elite percentage
between 5 to 15% is recommended.

• A complementary local search on the promising area of design space, found through
the global search by GA, can improve GA solution at the expense of only a few more
function evaluations.

• The performance of the proposed hybrid algorithm may change from a problem to
another depending on the complexity of design search space.

REFERENCES

1. Holland, J. H., Adaptation in natural and artificial systems, University of Michigan,

Ann Arbor, USA, 1975.
2. Goldberg, D. E., Genetic algorithms in search optimization and machine learning,

Addison-Wesley Publishing Co. Reading, Massachusetts, 1989.
3. Gen, M. and Cheng, R., Genetic algorithms and engineering optimization, John Wiley

and Sons, Inc., New York, 2000.
4. Chen, T. Y. and Chung, J. C., Improvement of simple genetic algorithm in structural

design, International Journal of Numerical Methods in Engineering, 40(1997)1323-1334.
5. Mahfouz, S.Y., “Design Optimization of Structural Steelwork”, Ph.D. thesis, University

of Bradford, U.K., 1999.

A HYBRID GENETIC ALGORITHM FOR STRUCTURAL ...

143

6. Sahab, M. G., Toropov V. V. and Ashour, A. F., Multilevel optimization of reinforced
concrete flat slab buildings based on genetic algorithm, Proc. of 3rd ASMO UK/ISSMO
Engineering Design Optimization Conference, Harrogate, UK, 9-10 July 2001, pp. 243-
248.

7. Michalewicz, Z., A survey of constraint handling techniques in evolutionary computation
methods, Proc. 4th annual conference on evolutionary programming, MIT Press,
Cambridge, 1995, pp. 135-155.

8. Lin, C. Y. and Hajela, P., Genetic Algorithms in optimization problems with discrete and
integer design variables, Engineering Optimization, 19(1992)309-327.

9. Yang, J. and Soh, C.K., Structural optimization by genetic algorithms with tournament
selection, Journal of Computing in Civil Engineering, ASCE, No. 3 11(1997)195-200.

10. Camp, C., Pezeshk, S. and Cao, G., Optimized design of two-dimensional structures
using a genetic algorithm Journal of Structural Engineering, ASCE, No. 5,
124(1998)551-559.

11. Wright, A. H., Genetic algorithms for real parameter optimization, Rawlins G. Ed.,
Foundations of genetic algorithm, California, Morgan Kaufmann Publishers, 1991, pp.
205-218.

12. Whitley, D., The GENITOR algorithm and selection pressure: why rank-based allocation
of reproductive trials is best. Proc. of 3rd International. Conference. on Genetic
algorithms, Schaffer, J.D., Ed., Morgan Kaufmann Publishers, California, 1989, pp. 116-
121.

13. Mitchell, M., An introduction to genetic algorithms, MIT Press, USA, 1998.
14. Coley, D. A. , An introduction to genetic algorithms for scientists and engineers, World

Scientific Publishing Co. Pte. Ltd., Singapore, 1999.
15. DeJong, K. A., An analysis of the behaviour of a class of genetic adaptive system. Ph.D.

thesis, University of Michigan, 1975.
16. Hooke, R. and Jeeves, T. A., Direct search solution of numerical and statistical problems,

Journal of Assoc. Computer Mach., 8(1961)212-229.
17. Rajeev, S. and Krishnamoorthy, C. S. Discrete optimization of structures using genetic

algorithms, Journal of Structural Engineering, ASCE, No. 5, 118(1992)1233-1250.
18. Galante, M., Genetic algorithms as an approach to optimize real world trusses,

International Journal for Numerical Methods in Engineering, 39(1996)361-382.
19. British Standards Institution, Structural use of concrete, Part 1, Code of practice for

design and construction, BS 8110, BSI, London, 1997.

